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We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary
fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic
top and bottom boundary conditions. Relevant characteristic growth exponents and the spatial structure of their
associated eigenfunctions are evaluated for different perturbations of the conductive state. Through-flow in-
duced changes of the bifurcation thresholds~stability boundaries! for different types of convective solutions are
determined in the control parameter space spanned by Rayleigh number, Soret coupling~positive as well as
negative!, and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf
symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we
determine with a saddle point analysis of the complex dispersion relation of the field equations over the
complex wave number plane the borders between absolute and convective instabilities for different types of
perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation.
@S1063-651X~96!11208-3#

PACS number~s!: 47.20.Bp, 47.15.2x, 47.54.1r, 47.60.1i

I. INTRODUCTION

An externally imposed flow can influence the spatiotem-
poral behavior of dissipative structures growing in forced
nonequilibrium systems. Examples are chemical and
reaction-diffusion systems, biological problems, and the
large variety of different hydrodynamic instabilities leading
to pattern formation@1#. Here we theoretically investigate
with a linear analysis of the relevant field equations the spa-
tiotemporal properties of convection solutions that bifurcate
out of the homogeneous, conductive state in a binary fluid
layer heated from below.

A lot of experimental@2–10#, analytical@11–17#, and nu-
merical @18–21# activities have been devoted recently to in-
vestigating these primary convection patterns in the absence
of through-flow@22#. They revealed a variety of bifurcation
properties and spatiotemporal behavior that is much richer
than that of stationary mirror symmetric roll patterns grow-
ing in the supercritical bifurcation of the standard Rayleigh-
Bénard setup with a pure fluid, say water. In binary mixtures
such as, e.g., ethanol-water there occur stationary square and
roll patterns but also symmetry degenerate left or right trav-
eling convection waves. The bifurcation of the traveling
wave ~TW! solutions and of the stationary roll patterns can
be supercritical, tricritical, or subcritical relative to the criti-
cal heating rate. These different solution properties are con-
trolled by the combination of thermal forcing — i.e., the
Rayleigh number — and the strengthc @1# of the Soret cou-
pling between temperature and concentration field. It is the
concentration field that causes the rich structure formation
behavior via its contribution to the buoyancy force field
which drives convection.

Without lateral through-flow several experimental and
theoretical papers have addressed the linear convection prop-
erties@25–37#. The most comprehensive and most accurate
results were obtained in the more recent numerical work
@31–37#. In this work we determine how a lateral through-
flow changes the structure and dynamics of convection fields

at onset. We evaluate relevant characteristic exponents and
the spatial structure of their associated eigenfunctions for
different perturbations of the conductive basic state and de-
termine the through-flow induced changes of the bifurcation
thresholds for different types of convective solutions. These
thresholds are defined by vanishing real parts of the charac-
teristic exponents. They mark stability boundaries of the con-
ductive state against different convective perturbations in the
control parameter space spanned by the Rayleigh number
Ra, the Soret couplingc, and the through-flow Reynolds
numberRe. We have numerically solved the full linear field
equations subject to realistic boundary conditions using a
shooting method for perturbations with wave vectors parallel
to the through-flow. The solutions for other wave vectors can
be obtained from the former by a straightforward symmetry
transformation. Results were obtained for positive as well as
for negativec. Forc,0 the most important result is that the
through-flow lifts the Hopf symmetry degeneracy of left and
right traveling waves atRe50: frequencies, bifurcation
thresholds, and structural properties of the two waves are
changed dramatically. Mixtures with more negativec re-
quire a largerRe for the changes to reach a comparable
relative size. For sufficiently largeRe the lowest relevant
bifurcation threshold of binary mixtures with anyc asymp-
totically approaches the critical Rayleigh number
Rac(Re,c50) of a pure fluid with imposed through-flow.
Then the externally imposed shear flow eliminates the Soret-
induced coupling effects between the convective concentra-
tion field and the other fields by suppressing vertical convec-
tive transport of Soret driven concentration perturbations.

Our paper is organized as follows. In Sec. II we describe
the system. In Sec. III we review the linearized equations for
perturbations of the conductive state, their boundary condi-
tions, the eigenvalue problem for the characteristic expo-
nents, relevant symmetry properties, and the behavior for
small through-flow rates. Section IV contains our results
concerning bifurcation properties — stability thresholds,
wave numbers, frequencies, and eigenfunctions — for nega-
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tive and positive Soret couplingc as functions of the
through-flow Reynolds numberRe. In Sec. V we compare
borderlines between absolute and convective instabilities ob-
tained for different types of perturbations from the field
equations with results from the Ginzburg-Landau amplitude
equation. The last section gives a brief summary of our
work. Appendix A contains details of our shooting method.
There we also describe our procedure to find saddle points of
the dispersion relation of the field equations in the complex
wave number plane. Appendix B presents results obtained
from a variational calculus.

II. SYSTEM

We consider a horizontal layer of heightd of a binary
fluid mixture in the homogeneous gravitational field
g52gez that is directed downwards. A positive temperature
differenceDT is imposed between the lower and upper con-
fining boundaries, e.g., via highly conducting plates in ex-
periments. The associated Rayleigh number is

Ra5
agd3

kn
DT, ~2.1!

wherek is the thermal diffusivity andn the kinematic vis-
cosity. The thermal expansion coefficienta and the solutal
expansion coefficientb follow from a linear isobaric equa-
tion of state for the total mass density

r5r0@12a~T2T0!2b~C2C0!# ~2.2!

for small deviations of the temperatureT from its meanT0
and small deviations of the solute’s mass concentrationC
from its meanC0.

An externally applied lateral pressure gradient drives a
through-flow in thex direction. The resulting mean lateral
flow velocity Ū determines the through-flow Reynolds num-
ber

Re5Ū
d

n
. ~2.3!

We investigate here the parameter regime 0<Re<1. With
d'0.5 cm, n'0.01 cm2/s ~H2O! the maximal averaged
through-flow velocity is thenŪ'0.02 cm/s, i.e., 1.2 cm per
minute.

A. Equations

To describe this system we use the balance equations for
mass, momentum, heat, and concentration in the Oberbeck-
Boussinesq approximation@23,39#

“–u50, ~2.4a!

~] t1u–“!u5s¹2u2“p1s~T2T01C2C0!ez ,
~2.4b!

~] t1u–“!T5¹2T, ~2.4c!

~] t1u–“!C5L¹2~C2cT!. ~2.4d!

Here u5uex1vey1wez is the velocity field. We reduce
lengths byd, times by d2/k, the effective pressurep by
k2/d2, temperatures bykn/(agd3), and the concentration
field by kn/(bgd3). Then the two material parameters
Prandtl number

s5
n

k
~2.5!

and Lewis number

L5
D

k
~2.6!

appear withD being the concentration diffusion constant.
Furthermore, there enters the separation ratio

c52
b

a

kT
T0

, ~2.7!

which measures the strength of the linear Soret coupling be-
tween concentration and temperature field via the thermodif-
fusivity kT .

B. Conductive state

For small Ra,Re a laterally homogeneous solution of
~2.4! is stable that describes a conductive state without ver-
tical convective flow. It is a combination of plane horizontal
Poiseuille flow

ucond5U~z!ex5s Re P~z!ex , ~2.8a!

P~z!56 z~12z! ~2.8b!

and a diffusive temperature field

Tcond5T01Ra~ 1
2 2z!, ~2.9!

which enforces via the Soret effect a diffusive vertical con-
centration stratification

Ccond5C01Ra c~ 1
2 2z!. ~2.10!

III. CONVECTIVE PERTURBATIONS

Here we briefly review the linearized equations for per-
turbations of the conductive state, their boundary conditions,
the eigenvalue problem for the characteristic exponents, rel-
evant symmetry properties, and the behavior for small
through-flow rates.

A. Linearization around the conductive state

1. Equations

The basis for our linear analysis of convective perturba-
tions of the conductive state described in Sec. II B are the
linearized field equations

~] t2s¹2!¹2w1~U¹22]z
2U !]xw5s~]x

21]y
2!~u1c!,

~3.1a!

~] t2¹21U]x!u5Ra w, ~3.1b!
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~] t2L¹21U]x!c5c Ra w2Lc¹2u ~3.1c!

for the deviations

u5T2Tcond, c5C2Ccond ~3.2!

from the conductive state~2.9!,~2.10!. Herew is the vertical
velocity field that vanishes in the conductive state. To derive
~3.1a! we have applied twice the curl operator to Eq.~2.4b!
using~2.4a!. Note that the Poiseuille flow profileU(z) of the
conductive state enters into Eqs.~3.1! making them nonau-
tonomous.

2. NSI boundary conditions

We consider the horizontal boundaries to be perfectly heat
conducting and rigid with no slip and vanishing vertical con-
centration transport. These, so called, NSI~no-slip, imperme-
able! conditions impose

u5w5]zw5]zz50 at z50,1. ~3.3!

Here we have introduced the combined field

z5c2cu. ~3.4!

Since the concentration current at the no-slip boundaries is
purely diffusive the condition]zz50 ensures impermeability
of the horizontal boundaries. Laterally we assume the system
to be unbounded.

3. FS boundary conditions

As an illustrative special case let us consider for the mo-
ment free slip~FS! horizontal boundaries with a shear-free
plug flow profile,UFS(z)5Ū. In this idealized situation the
effect of through-flow in Eqs.~3.1! can be transformed away
by a Galilei transformation to a system that comoves with
the vertically constant plug flow velocityŪ5s Re. Thus,
the stability properties of the FS conductive state are not
changed by the horizontal plug flow. The stationary and os-
cillatory marginal stability curves of the mixture remain the
same, only the characteristic exponents acquire an additional
imaginary part of sizeikxŪ. This holds for FS horizontal
boundaries irrespective of whether they are permeable or im-
permeable to the concentration fieldc.

B. Eigenvalue problem

The general solution of the perturbation equations~3.1!
can be written as a superposition of plane-wave perturbations
with lateral wave vector

k5kxex1kyey . ~3.5!

The plane-wave solution ansatz for the fields

F5~w,u,z! ~3.6!

reads

F~r ,t !5F̂~z!ei ~kxx1kyy!est ~3.7!

with a complex characteristic exponent

s5Res1 i Ims5g2 iv ~3.8!

and complexz-dependent amplitude functionsF̂5(ŵ,û,ẑ).
Inserting the ansatz~3.7! into the field equations~3.1! yields
the 333 linear eigenvalue problem

~L1sM!F̂~z!50 ~3.9a!

for the eigenvaluess and eigenvectorsF̂ with

L5L~0!1 iskxReL~1!, ~3.9b!

L~0!5S 2s~]z
22k2!2 s~11c!k2 sk2

2Ra k22]z
2 0

0 c~]z
22k2! L~k22]z

2!
D .
~3.9c!

Into

L~1!5S P~]z
22k2!2]z

2P 0 0

0 P 0

0 0 P
D ~3.9d!

enters the vertical profileP(z) ~2.8b! of the Poiseuille
through-flow and its second derivative. Finally

M5S ]z
22k2 0 0

0 1 0

0 0 1
D . ~3.9e!

In the absence of through-flowL reduces toL(0).
Due to the boundary conditions the eigenvalue spectrum

is discrete. We are interested in the three characteristic ex-
ponentssj ( j51,2,3) whose growth ratesg j are closest to
zero and whose eigenfunctionsF̂j (z) have no nodes other
than at the horizontal boundariesz50,1.

C. Symmetries

The solution of~3.9!, i.e., eigenvalues and eigenfunction
F̂ depend on the material parameterss and L, the control
parametersc, Ra, Re, and on the lateral wave vectork.
Note first of all that the dynamics of perturbations with wave
vectors perpendicular to the through-flow are not changed by
the latter, since for them the contribution fromL(1) vanishes
whenkx50.

1. Squire transformation

Sincek andRe enter into~3.9! only ask2 andkxRe the
dependence of the functionsf5s,F̂ on k, andRe is

f5 f ~k2,kxRe!. ~3.10!

Using this behavior the Squire transformation@38#

f ~kx
21ky

2 ,kxRe!5 f ~ k̃ x
2 ,k̃xRẽ!, ~3.11a!

k̃ x
25kx

21ky
2 , Rẽ5

kx

k̃x
Re ~3.11b!
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relates the functionsf for a wave vector with arbitrary com-
ponentskx ,ky to the functions that have been determined for
wave vectorsk̃5 k̃xex in the through-flow direction and Rey-

nolds numbersRẽ. Therefore, we shall consider in the re-
mainder of this work onlyky50 perturbations with wave
vectors k5kxex that are parallel or antiparallel to the
through-flow. ForRe50 the Squire relations~3.11! reflect
the horizontal rotational symmetry of the system in the ab-
sence of through-flow.

2. Reverting the through-flow direction

Upon reverting the flow direction, i.e., under the operation
Re→2Re the set$sj ,F̂j% of eigenvalues and eigenfunctions
transforms into each other since the balance equations~2.4!
are invariant under the parity operation (x,u)→2(x,u) with
u being the velocity field in thex direction. The transforma-
tion behavior of$sj ,F̂j% follows explicitly from the fact that
the linear operatorL entering the eigenvalue equation~3.9!
transforms as

L~2qx!5L* ~qx!, qx5kxRe ~3.12!

underRe→2Rewith the asterisk denoting complex conju-
gation. Here we do not display the other arguments ofL that
remain unchanged. We use~3.12! in the complex conjugate
of Eq. ~3.9!:

@L~2qx!1s* ~qx!M#F̂j* ~qx!50. ~3.13!

Thus, if sj (qx) with F̂j (qx) are solutions of~3.9! so are

s̃j~qx!5sj* ~2qx! with F̂̃j~qx!5F̂j* ~2qx!.
~3.14!

Now, the nondegeneracy of the eigenvalue problem implies

that the two sets$s̃j ,F̂̃j% and$sj ,F̂j% are the same. We find
that one eigenvalue, sayj53, does not change —s̃35s3 and

F̃̂35F̂3 — so that according to~3.14!,

g3~2qx!5g3~qx!, ~3.15a!

2v3~2qx!5v3~qx!, ~3.15b!

F̂3* ~2qx!5F̂3~qx!. ~3.15c!

The other two eigenvalues and eigenfunctions are
cross-related to each other — s̃15s2 ,F̂15F̂2,

and s̃25s1 ,F̃̂25F̂1 — so that according to~3.14!,

g1~2qx!5g2~qx!, ~3.16a!

2v1~2qx!5v2~qx!, ~3.16b!

F̂1* ~2qx!5F̂2~qx!. ~3.16c!

For Re50 the relations~3.15! and ~3.16! reflect the facts
that in the absence of through-flow~i! the solutions depend
on kx

2 only, ~ii ! one eigenvalue is real, sayv350, with real
eigenfunctionF̂35F̂3* that describes nonoscillatory dynam-
ics, and~iii ! the other two are a complex conjugate pair —

g15g2 ,v152v2 with F̂1*5F̂2 — which describes the
growth and/or decay of symmetry degenerate left and right
traveling waves. This symmetry is broken by the through-
flow. If for Re50 all three eigenvalues and eigenfunctions
are real then they fulfill for finiteRe relations such as~3.15!.

Since ~3.15! and ~3.16! relate the solutions for negative
kx , or Re to those with positivekx or Re it suffices to in-
vestigate the three eigenvaluessj and eigenfunctionsF̂j for
positivekx , or Re only.

D. Expansion for small Reynolds numbers

It is instructive to see how theRe50 solutions$sj ,F̂j% of
the eigenvalue problem~3.9! evolve upon switching on the
through-flow. The qualitative behavior can be studiedana-
lytically for smallRe via an expansion in the parameter

h5sqx5skxRe, ~3.17!

which appears explicitly in the linear operatorL ~3.9b!

L5L~0!1 ihL~1!. ~3.18a!

So we expand

sj5sj
~0!1hsj

~1!1O~h2!, ~3.18b!

F̂j5F̂j
~0!1hF̂j

~1!1O~h2!. ~3.18c!

Inserting~3.18! into ~3.9a! yields in orderh the equation

~ iL~1!1sj
~1!M!F̂j

~0!52~L~0!1sj
~0!M!F̂j

~1! , ~3.19!

which is solvable under the condition

^F̂j
~0!†u~ iL~1!1sj

~1!M!F̂j
~0!&

5E
0

1

dz~F̂j
~0!†!* ~ iL~1!1sj

~1!M!F̂j
~0!50. ~3.20!

HereF̂j
(0)† is the solution of the adjoint equation

~L~0!†1sj
~0!†M†!F̂j

~0!†50 ~3.21!

of the zeroth-order eigenvalue problem

~L~0!1sj
~0!M!F̂j

~0!50 ~3.22!

for the eigenvaluesj
(0) . Note thatsj

(0)†5sj
(0)* is the complex

conjugate of the original eigenvaluesj
(0) . The Fredholm al-

ternative~3.20! leads to the first-order correction forsj :

sj
~1!52 ip j , ~3.23!

where

pj5
^F̂j

~0!†uL~1!F̂j
~0!&

^F̂j
~0!†uMF̂j

~0!&
~3.24!

is determined by normalized ‘‘matrix elements’’ of
through-flow perturbation ‘‘operators’’ containing the
profile P(z) between the zeroth-order eigenfunctions
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F̂j
(0)5(ŵj

(0) ,û j
(0) ,ẑ j

(0)). Thus, the small-Reexpansion yields
the following results for the eigenvaluessj5g j2 iv j :

g j5g j
~0!1h Impj1O~h2!, ~3.25a!

v j5v j
~0!1h Repj1O~h2!. ~3.25b!

For the subsequent discussion we use the fact that the
‘‘operators’’ entering into the ‘‘matrix elements’’ of Eq.
~3.24! are real.

1. Stationary perturbations

Let us call a perturbation stationary, for shorthand, if the
characteristic exponentsj

(0) in the absence of through-flow is
real. Then the corresponding eigenfunction is real as well,
F̂j
(0)5F̂j

(0)* which implies that alsopj ~3.24! is real. Thus,
with Impj50, one obtains from~3.25!

g j5g j
~0!1O~Re2!, ~3.26a!

v j5v j
~0!1skxReRepj1O~Re2!. ~3.26b!

The frequency grows linearly withkxRe while the growth
rate is an even function ofkxRe for these stationary pertur-
bations as shown schematically in Fig. 1 for the eigenvalue
labeled byj53.

2. Oscillatory perturbations

We call the perturbations oscillatory that are described by
the two eigenvalues~say, j51,2) that in the absence of
through-flow form a complex conjugate pair,s2

(0)5s1
(0)* .

The corresponding eigenfunctions are complex conjugates of
each other,F̂2

(0)5F̂1
(0)* , according to~3.16!, which implies

p25p1* . With Rep25Rep1 and Imp252Imp1 one obtains
from ~3.25! the following relations:

g
2
15g1

~0!6skxRe Imp11O~Re2!, ~3.27a!

v
2
156v1

~0!1skxReRep11O~Re2!. ~3.27b!

Since with the plane-wave perturbation ansatz~3.7! the TW
phase velocityv/kx should be increased for positivekx and
Re by the through-flow one can expect without having per-
formed an explicit calculation that Rep1 in ~3.27b! should be
positive — cf. Fig. 1. And consequently both frequencies
v1,2
(0) are shifted upwards by the same amountskxReRep1.

On the other hand, to decide whether the growth rate of the
left or of the right traveling wave is increased or decreased
requires an explicit calculation of Imp1. In any case, how-
ever, Eq. ~3.27a! predicts that for small through-flow the
symmetry degeneracy,g1

(0)5g2
(0) , of the growth rates is

lifted by a symmetric splitting that increases linearly with
Re as indicated schematically in Fig. 1 forg1 andg2.

For idealized FS boundary conditions the frequencies
v j5v j

(0)1skxRebehave as in Fig. 1. However, the growth
rates are independent ofRe so that the degeneracy
g1
(0)5g2

(0) is not lifted by the FS plug flow.

IV. STABILITY AND BIFURCATION PROPERTIES

Here were present for negative as well as for positive
Soret couplingc the Re dependence of critical properties:
stability thresholds, wave numbers, frequencies, and eigen-
functions. These results have been obtained numerically by a
variant @43# ~cf. Appendix A1 for a short description! of a
standard shooting method that has previously been used@30#
to determine stability properties of binary mixtures in the
absence of through-flow@36#. In order to check these results
— in particular some of the unexpectedly strong and peculiar
changes withRe— by an independent method we have per-
formed a variational calculation described in Appendix B.

A. Notation

We introduce Rayleigh numbers and wave numbers

r5
Ra

Rac~Re50,c50!
, ~4.1a!

k̂5
k

kc~Re50,c50!
, ~4.1b!

which are reduced by the critical ones of a pure fluid
(c50) in the absence of flow (Re50)

Rac~Re50,c50!51707.76, ~4.2a!

kc~Re50,c50!53.11632. ~4.2b!

As explained in Sec. III C, it suffices to consider wave vec-
torsk5kxex in the through-flow direction with positive com-
ponentkx5uku5k. The spatiotemporal behavior of perturba-
tions with other vectors follows with the symmetries of Sec.
III C. We determine the evolution of the three relevant ei-
genvaluessj5g j2 iv j ~cf. Sec. III B! upon increasingRe
from Re50 up to about 1. In particular we evaluate the
critical parameter combinations for which each of the three
growth ratesg j first passes through zero when increasingr .

The so obtained critical quantities are marked by a sub-
script c and in addition by a superscriptS, U, D that re-
places the running indexj of the three eigenvalues used in

FIG. 1. Eigenvalues for small Reynolds numbers. The variation
of growth ratesg and frequenciesv with Re resulting from an
expansion up to linear order inRe is shown schematically. The
lifting of the symmetry degeneracy,s2

(0)5s1
(0)* , by the through-

flow and the behavior ofs3
(0) is described in Sec. III D.
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Sec. III. The superscriptsS, U, andD identify the critical
perturbation behavior,ei (kcx2vct), in the limitRe→0. Eigen-
values for whichvc(Re→0)50 are marked byS since
these perturbations are stationary forRe50. Eigenvalues for
whichvc(Re→0) is positive~negative! carry the superscript
D (U) since they characterize forRe→0 perturbations that
propagate in the downstream~upstream! direction. We stress
again that the casesS ~‘‘stationary’’!, D ~‘‘downstream’’!,
and U ~‘‘upstream’’! characterize the perturbations in the
limit Re→0 — see also Fig. 1. In general all critical fre-
quencies are finite in the presence of through-flow. However,
for a special value ofRe one hasvc

U50 while vc
S andvc

D

are positive~cf. Sec. IV B and Sec. IV C!.

B. Effect of through-flow on the oscillatory instability

We present in this subsection critical properties of a bi-
nary mixture such as water-ethanol withL50.01, s510,
and separation ratioc520.1 as a representative case for a
moderately negative Soret coupling. For these parameters the
nonlinear solution of stationary convection in the absence of
through-flow,Re50, is already disconnected from the con-
ductive state since the stationary bifurcation thresholdr c

S has
moved already atc`

052L/(11L) to infinity @27#. How-
ever, atr c

D5r c
U51.1200 there is forRe50 an oscillatory

threshold into symmetry degenerated left and right — or in
our language upstream and downstream — propagating trav-
eling waves with critical wave numbersk̂c

D5 k̂c
U51.0022 and

critical Hopf frequencyvc
D52vc

U56.4659.
In Fig. 2 we show the variation of these two critical

thresholds, wave numbers, and frequencies with increasing
through-flow Reynolds numbers. In each case the full
~dashed! line represents the upstream~downstream! critical
quantity. Initially, for smallRe, the bifurcation threshold

r c
U(r c

D) is depressed~enhanced! by the through-flow so that
the conductive state is destabilized~stabilized! against con-
vective perturbations traveling upstream~downstream! in
comparison to the symmetry degenerate Hopf bifurcation
threshold without through-flow — see also the schematic
variation of the growth rates in Fig. 1. So at very smallRe it
is upstream traveling wave convection that grows first when
increasing the Rayleigh number quasistatically.

However, whiler c
D increases monotonically withRe—

first linearly and then quadratically — the initial linear
downwards shift ofr c

U changes at largerRe to a precipitous
increase and a subsequent flattening. Thus, in the shown
Re range the two critical curvesr c

U and r c
D have two inter-

sections giving rise to bistable behavior of perturbations
there. Note, however, that the bistable upstream and down-
stream TW perturbations cannot be superimposed linearly to
a standing wave since their wave numberskc

UÞkc
D differ and

furthermorevc
UÞ2vc

D . So in theRe interval between the
bistable intersections ofr c

U and r c
D downstream propagating

convection waves grow first while outside this interval at
smallRe and largeRe upstream TW convection bifurcates
first out of the conductive state.

Considering the critical wave numberskc
U andkc

D of Fig.
2~b! it should be noted that their variation is very small —
less than 2% — and thatkc

U,kc
D in theRe range of Fig. 2.

This behavior holds also for the other Soret coupling
strengthsc520.25,20.01, and20.001 that we have inves-
tigated@43#.

Somewhat unexpected to us is the nonmonotonical varia-
tion of kc

U and also of]vc
U/] Re @Fig. 2~c!# in the interval

belowRe50.5 wherevc
U changes sign and wherer c

U shows
its strong increase. To check that this variation is not a nu-
merical artifact of our shooting algorithm we have performed
a stability analysis with a variational approximation being a
fundamentally different method. The variational results pre-
sented in Appendix B also show the peculiar variation of
kc
U with Reobtained from the shooting method thus support-
ing the latter behavior.

The critical frequenciesvc
U andvc

D shown in Fig. 2~c! are
practically linear functions ofRe and in this respect similar
to the frequencies of the idealized FS system. They start at
zero through-flow with the Hopf valuesuvc

(0)u and2uvc
(0)u,

respectively, and they can be very well approximated by the
first-order result~3.27b! of the lowRe expansion

vc5vc
~0!1skc

~0!Rep1Re, ~4.3!

with skc
(0)Rep1'41.9 for s510. Comparing this rate of

change]vc /]Re'41.9 with results for other separation ra-
tios including the pure fluid case@42# one finds only very
small deviations@43#. Obviously Rep1 ~3.24! depends only
weakly on the Soret couplingc.

Note that forRe>uvc
(0)u/41.9 both critical frequencies,

vc
D and vc

U , are positive. Then the phase velocities,
vc5vc /kc , of the two different critical TW’s are in the
positivex direction in the laboratory system, i.e., in through-
flow direction. However,vc

U is always smaller — by about
2uvc

(0)u — than vc
D . Only for Re<uvc

(0)u/41.9 is the phase
velocity vc

U negative, i.e., opposite to the through-flow. So

FIG. 2. Evolution of Hopf bifurcation properties with through-
flow. Shown are critical Rayleigh numbers~a!, reduced wave num-
bers ~b!, and frequencies~c! for upstream~full lines! and down-
stream ~dashed lines! traveling perturbations that are symmetry
degenerate forRe50. Parameters areL50.01, s510, c520.1.
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the wording ‘‘upstream propagating perturbations’’ that we
are using in this work does not necessarily imply that the
phase velocity of such a TW is negative in the laboratory
frame. It would be negative in a frame that is moving in the
through-flow direction with a conveniently defined mean lat-
eral velocity such as, e.g.,v̄5 1

2(vc
D1vc

U).

C. Bifurcation thresholds at negativec

In Fig. 3 we show the bifurcation thresholdsr c
U ~full

lines!, r c
D ~dashed lines!, andr c

S ~dotted lines! as functions of
Re for a few characteristic negative Soret couplingsc.

1. rc
U
„Re,c…

The typical shape of the stability curver c
U that is dis-

played in Fig. 2~a! for c520.1 does not change much for
other negative separation ratios: As a function ofRe rc

U ~full
lines in Fig. 3! decreases for smallRe, develops a minimum
wherevc

U goes through zero, steeply increases thereafter,
and finally flattens asymptotically towardsr c

S(Re,c50) at
largeRe. Thus a sufficiently large through-flow eliminates
the Soret induced coupling effects between concentration
field on one side and temperature and velocity field on the
other side: The bifurcation thresholdr c

U(Re,c) approaches
for any Soret couplingc the pure fluid stability boundary
r c
S(Re,c50) at largeRe. For smallc, e.g., atc520.001,
the stability boundaryr c

U lies always belowr c
D while for

larger ucu ~see, e.g.,c520.01) there are two intersections
of the curvesr c

D and r c
U with r c

D<r c
U in between — cf. the

related discussion in Sec. IV B.

2. rc
D
„Re,c…

The bifurcation thresholdr c
D ~dashed lines in Fig. 3! al-

ways increases monotonically with the through-flow
strength. The initial slope]r c

D/]Re increases somewhat with
decreasingucu. For c520.001 andc520.01 the stability
curvesr c

D andr c
S collide in theRe range displayed in Fig. 3.

This property is elucidated in Secs. IV C 4 and IV C 5 fur-
ther below.

3. rc
S
„Re,c…

In pure fluids, c50, the bifurcation threshold
r c
S(Re,c50) ~lowest dotted curve in Fig. 3! slightly in-
creases with growingRe @42#. In binary mixtures with nega-
tive Soret coupling, on the other hand, the stationary thresh-
old r c

S gets very strongly depressed by a small through-flow
— see the dotted curve forc520.001 that starts at
r c
S(Re50, c520.001)51.1816.
In the absence of through-flow,Re50, the thresholdr c

S

rapidly increases with ucu and diverges at
c`
052L/(11L).20.0099 forL50.01. Beyond this Soret

coupling the solution branch of stationary nonlinear convec-
tion is disconnected from the ground state solution as
r c
S(Re50, c<c`

0 )5`. A small but finite through-flow,
however, moves the thresholdr c

S down to finite values: The
dotted curve for r c

S in the inset of Fig. 3 for
c520.01,c`

0 shows ~i! that r c
S5` below a finite

Rè '0.019,~ii ! that r c
S is finite forRe.Rè , and~iii ! that

r c
S steeply drops down forRe.Rè . The Reynolds number
Rè wherer c

S diverges grows with increasingucu — a stron-
ger Soret coupling requires a larger through-flow to move the
bifurcation thresholdr c

S from infinity to a finite value.

4. Collision of the rc
D and rc

S stability boundaries

With increasingRe the bifurcation thresholdsr c
S and r c

D

approach each other. The former decreases rapidly and the
latter increases withRe and they almost coalesce in the
Re-r plane of Fig. 3. This behavior is most easily understood
by investigating how the relevant eigenvaluess5g2 iv
vary with r andRe. To that end we show in Fig. 4g(r ) and
v(r ) of the two relevant eigenvalues for a representative
Soret couplingc520.01 atRe50 ~thick curves! and at
Re50.4 ~thin curves! for a fixed wave numberk̂51. The
real part of the third eigenvalue is always negative in the
parameter range of Fig. 4 and thus irrelevant for the follow-
ing. Figure 5 shows in aschematicway the motion of these
two eigenvalues in the complexs plane with increasingr for
Re50 ~thick curves! and for a smallReÞ0 ~thin curves!.

Let us consider first Re50. Then there is for
small r a complex conjugate pair of eigenvalues
(gU5gD,vU52vD) that produce the symmetry degenerate
Hopf bifurcation @at r D5r U'1.021 in Fig. 4~b!# when gU

and gD pass simultaneously through zero. This situation is
marked in Fig. 4 and Fig. 5 by thick upwards and downwards
pointing triangles. With increasingr the real partsg grow
and the frequenciesv approach zero and the pair of eigen-
values meets in the complexs plane of Fig. 5 on the realg
axis~i.e., in Fig. 4 atr'1.231). Then, at largerr , this pair of
real eigenvalues splits and moves apart along the realg axis
~cf. thickly dottedS1 andS2 curves in Figs. 4 and 5!. So we

FIG. 3. Re dependence of bifurcation thresholds for negative
Soret couplingc. The stability boundariesr c

S ~dotted lines!, r c
D

~dashed lines!, andr c
U ~full lines! are shown for some representative

c values as indicated. The behavior beyond theRe values where
r c
D and r c

S collide is discussed in Secs. IV C 4 and IV C 5. Param-
eters areL50.01, s510.
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have a transformation of two oscillatory eigenvalues (U and
D) into two stationary ones (S1 andS2). ForRe50 the two
thickly dotted branchesgS1 and gS2 in Fig. 4~b! remain
above zero, i.e.,S1 does not reach the imaginary axis in Fig.
5.

Now for finite Re the symmetry degeneracy of the Hopf
eigenvalue pair is lifted. Ther value wheregU goes through
zero @upward pointing triangle atr U'1.05 in Fig. 4~b!# dif-
fers from the one wheregD50 @downward pointing triangle
at r D'1.112 in Fig. 4~b!# and the frequenciesvU andvD

@thin lines in Fig. 4~a!# are shifted upwards. Thus the
Re50 pitchfork topology of the eigenvalue paths in Fig. 5 is

perturbed. Moreover, the eigenvalue branches become dis-
connected~thin lines in Fig. 5! as the thick eigenvalue
branches of Fig. 4 are deformed by the through-flow into the
thin ones — the arrows in Fig. 4~b! indicate the deformation
directions. In particular the lowergS1 branch of Fig. 4~b! and
similarly the left movingS1 branch in Fig. 5 goes at a suf-
ficiently largeRe through zero at the circle in Figs. 4 and 5
thereby producing anS instability for k̂51 at the circle, i.e.,
at a finite value ofr S @'1.296 in Fig. 4~b!#. Coming from
` the S1 intersection~circle! in Fig. 4~b! has moved with
increasingRe to the left to finite valuer S. By increasing
Re further the thinD/S1 curve in Fig. 4~b! is pushed down-
wards towards smallerg, i.e., to the left in Fig. 5. Thereby
the zero crossings atr D ~downward pointing triangle! and
r S ~circle! move together and vanish simultaneously at a par-
ticularRevalue. Thereafter there is only the zero crossing of
gU at r U ~upward pointing triangle!. This is in principle what
happens when ther c

D and r c
S curves in Fig. 3 at

c520.001 and20.01 approach each other with increasing
Re.

5. Opening of a wave number gap
in the D-S marginal stability curves

The above described merging of the zeros of thegD/S1

curve that occurs in Fig. 4~b! for k̂51 slightly above
Re50.4 corresponds to the opening up of a gap in the mar-
ginal stability curves againstD and S perturbations. This
scenario is documented in thek̂-r plane of Fig. 6. There we

FIG. 4. ~a! Frequenciesv(r ) and ~b! growth ratesg(r ) of the
two eigenvalues that cause collision of the stability curvesr c

D and
r c
S in Fig. 3. Thick ~thin! lines and symbols referring toRe50
(Re50.4) were obtained for a fixed wave numberk̂51. Arrows
indicate deformation directions of the curves. TheRe variation of
the zeros ofg at r U ~upwards pointing triangle!, r D ~downwards
pointing triangle!, and r S ~circle! is discussed in Sec. IV C 4. Pa-
rameters areL50.01, s510, c520.01.

FIG. 5. Schematicvariation of the eigenvalues of Fig. 4 in the
complexg-v plane. Arrows indicate the motion of the eigenvalues
with increasingr . Line styles and symbols are those of Fig. 4.

FIG. 6. The ‘‘mountain landscape’’ ofgD/S over thek̂-r plane
for Re50.4 ~a! andRe50.475~b!. Gray scales show the height of
gD/S in the range whereg.0. Thick lines are marginal stability
curves whereg50. In the white parts of the figures isgD/S,0.
Dashed lines are iso-g lines. The zeros ofgD/S marked by circle
and downwards pointing triangle are those of Fig. 4~b!. Parameters
areL50.01, s510, andc520.01.
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show with gray scales the height distribution ofgD/S1 in the
k̂-r range whereg.0. Thick lines labeled byg50 are mar-
ginal stability curves. In the white parts of Fig. 6gD/S1 is
negative and the dashed lines indicateg isolines forg,0.
The third eigenvaluegU/S2 being positive — cf. Figs. 4 and
5 — is not shown. The open triangle and the circle in Fig.
6~a! mark the zeros ofgD/S1 atRe50.4, which are shown in
Fig. 4~b! by the same symbols.

Upon increasingRe the eigenvaluegD/S1 decreases.
Thus, the ‘‘mountain landscape’’ ofgD/S1 somewhat glo-
bally ‘‘sinks’’ down. Thereby theg50 isolines come to-
gether in thek̂-r plane of Fig. 6 and since the ‘‘mountain
ridge’’ of gD/S1 does not have constant height@cf. gray
scales in Fig. 6~a!# the g50 curves are connected into two
tongues@Fig. 6~b!# that are separated by a wave number gap
in which gD/S1 is negative. IncreasingRe further the gap
widens and thek̂-r regions withg.0 between theg50
isolines narrow down as the latter move away fromk̂51
towards largerr .

We have difficulties resolving this behavior of theg50
isolines with our shooting method. We therefore show in Fig.
3 and later in Figs. 8 and 15 the minimar c

D and r c
S of the

marginal stability curves onlybefore the wave number gap
opens. The ending ofr c

D andr c
S in Figs. 3, 8, and 15 should

therefore not be interpreted as a termination of bifurcation
branches: after the opening up of the gap the tongue shaped
stability curves move towards largerr and with them their
minima.

D. Bifurcation properties at positive c

In the absence of through-flow there is only a stationary
bifurcation thresholdr c

S(Re50,c) at c>0 that strongly
drops fromr c

S(Re50,c50)51 towards zero when increas-
ing c. Switching on the through-flow has the overall effect
of increasingr c

S towards r c
S(Re,c50) as can be read off

from Fig. 7. Thus the lateral flow stabilizes the basic state by
eliminating in the so-called Soret regime@9# the convectively
induced concentration homogenization. Note that already a
very small through-flow has a dramatic stabilization effect:
r c
S increases very strongly for smallRe. Similarly the critical
wave numberk̂c

S @Fig. 7~b!# approaches with increasingRe
the pure-fluid valuek̂c

S(Re,c50).

E. Bifurcation surfaces in r -Re-c space

To give an impression of the form of the three critical
surfaces in ther -Re-c space whereU, D, andS convection
patterns bifurcate out of the conductive state we combine in
Fig. 8 in a three-dimensional plot theRe dependence of the
bifurcation thresholdsr c

U ~thin full lines!, r c
D ~thin dashed

lines!, and r c
S ~thin dotted lines! presented so far together

with their c dependence forRe50 ~thick lines!. The bifur-
cation surfacesr c

D(Re,c) and r c
U(Re,c) emanate for nega-

tive Soret couplingc,0 out of the degenerate Hopf thresh-
old line r c

D(Re50,c)5r c
U(Re50,c) ~thick dashed and full

line! and split apart when the through-flow is switched on.
Upon increasingRe further r c

U gets indented slightly. On the
other hand,r c

D curls up and comes very close to the surface

r c
S(Re,c) which is strongly bent down by the through-flow
for c,0. See Secs. IV C 4 and IV C 5 for a discussion of the
further fate of these bifurcation surfaces.

The physically relevant, i.e., lowest lying, surface at
larger Re is r c

U(Re,c) ~thin full lines!. For any c,0 it
asymptotically approaches with increasing through-flow the
c50 stability threshold, i.e.,r c

U(Re,c)→r c
S(Re,c50).

Thus a sufficiently large through-flow effectively eliminates
the influence of any Soret coupling betweenconvectivecon-
centration field and temperature and velocity fields~the dif-

FIG. 7. ~a! Critical Rayleigh numbers and~b! wave numbers for
positivec versus through-flow Reynolds numbers. Parameters are
L50.01, s510.

FIG. 8. To give an impression of the bifurcation surfaces in
r -Re-c space we showr c

U ~thin full lines!, r c
D ~thin dashed lines!,

and r c
S ~thin dotted lines! together with theirc dependence for

Re50 ~thick lines!. Parameters areL50.01, s510.
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fusively induced concentration stratification in the conduc-
tive state~2.10!, on the other hand, is not altered by the
lateral shear flow!. The bifurcation thresholds of the mixture
approach that,r c

S(Re,c50), of the pure fluid. This also
holds for mixtures with positive Soret coupling — cf. the
thin dotted line forr c

S(Re,c) at c.0.

F. Structure of critical convective patterns

Here we show how the spatial structure of the critical field
deviations from the conductive state changes with increasing
Re. To that end we have evaluated the complex eigenfunc-
tions F(x,z,t)5F̂(z)ei (kcx2vct) at the critical thresholds
r c
D , r c

U , and r c
S . Thus the critical convective fieldsw,u,c

have the form

w~x,z,t !5uŵ~z!ucos@kcx2vct2ww~z!# ~4.4!

and similarly foru andc. Being solutions of complex linear
equations we choose the abitrary complex scaling constant
by fixing the modulus of the convective temperature field in
the middle of the layer,

uû~z5 1
2 !u51, ~4.5!

and by fixing the vertical mean of the phaseww(z) of the
vertical velocity field to zero

E
0

1

dzww~z!50. ~4.6!

We present gray-scale contour plots of the fieldsw,u, and
c in the verticalx-z cross section of the fluid layer with
white ~black! denoting large~small! values. Each of Figs. 9,
11, 13 has nine contour lines denoting the fractions6n/5 of
the maximal field values withn50,1,2,3,4. In addition we
present in Figs. 10, 12, 14 vertical profiles of the moduli and
phases of the complex field amplitudesŵ,û, and ĉ.

1. Propagating patterns for Re50

First we briefly recall the critical TW field structure~top
part of Fig. 9! in the absence of through-flow@30–32# for a
relatively large Soret couplingc520.25. The TWs of ve-
locity, temperature, and concentration are vertically not
plane but their phases show a vertical variation that is largest
for the concentration wave~Figs. 9 and 10!. The lateral lo-
cation of a concentration surplus~white ellipse in thec field
of Fig. 9! phase lags by about a quarter wavelength behind
the lateral position of vertical downflow~black ellipse in the
w field!. Thus, since thew field advectively transports con-
centration surplus~deficiency! from the Soret induced alco-
hol rich top~poor bottom! boundary layer into the bulk fluid
this feeding mechanism between boundary layer and bulk is
laterally phase shifted by roughlyl/4 in the propagating
wave. Also the crest~valley! position of the temperature
wave phase lags — albeit by a smaller amount — behind the
lateral location of maximal vertical upwards~downwards!
flow, which advectively feeds the bulk with warm~cold!
fluid from the warm bottom~cold top! region. This phase lag
agrees quite well with the result

ww2wu' arctanF vc
~0!

p21~kc
~0!!2

G ~4.7!

obtained@16# from a Galerkin model.
As a result of the smallness of the Lewis numberL, i.e.,

of the diffusive concentration transport thec field shows
characteristic boundary layer behavior near the plates where
advection decreases to zero — see the variation of the modu-
lus uĉ(z)u and of the phasewc(z) in Fig. 10. Whithin the
boundary layersuĉ(z)u is suppressed and the phase lag of the
c wave behind thew wave is significantly enlarged.

2. ‘‘Downstream’’ patterns

Upon turning on the through-flow the phase lines of the
downstream propagating patterns get bent further~cf. Fig. 9
and in particular the right column of Fig. 10! and the phase
differences between the different waves increase near the
plates. The vertical moduli profiles ofw and u do not
change. On the other hand,uĉ(z)u decreases~increases! near
the plates~in the center of the fluid layer! so that the vertical
profile of uĉu flattens near the plates and becomes more

FIG. 9. Spatial structure ofD patterns that propagate down-
stream, i.e., to the right. Contours of the fieldsw, u, c in vertical
cross sections of the fluid layer are shown for differentRe as indi-
cated. White~black! implies large~small! field values. The largest
vertical up~down! flow is at x50(61). Contour lines mark frac-
tions 6(0,1,2,3,4)/5 of the field maxima. Parameters are
L50.01, s510, c520.25. The critical frequencies are about
vc
D'11.21141.9Re.
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peaked in the bulk nearz51/2. The phase lag ofwc(z) in-
creases in the boundary layers with the through-flow.

The above described flow-induced structural changes of
ĉ(z) can easily be understood within theL50 approxima-
tion @30,32# to the concentration field balance~3.1c!

ĉ~z!' icRac
D ŵ~z!

vc
D2skc

DP~z!Re
~4.8!

in a critical TW that is propagating downstream with the
critical frequencyvc

D . Thus forL50, i.e. in the absence of
diffusive concentration currents — which, by the way, is
quite a good approximation to the real situation of ethanol-
water mixtures withL50.01 — theĉ(z) profile is advec-
tively slaved to the vertical velocityŵ(z) and the through-
flow velocity U(z)5sP(z)Re: The prefactor i in ~4.8!
reflects the overall phase shift ofp/2 betweenŵ and ĉ. The
effective z dependentlateral velocity

ueff
D ~z!5vc

D2sP~z!Re ~4.9!

that enters in the denominator of~4.8! renormalizes the pro-
file ŵ in the numerator of~4.8! so that theL50 concentra-
tion profile

ĉ~z!' ic
Rac

D

kc
D

ŵ~z!

ueff
D ~z!

~4.10!

is determined by the quotient of these two velocity profiles.
Since the phase velocity of theD wave, vc

D5vc
D/kc

D , can
well be approximated by

vc
D'vc

~0!1sRep1Re ~4.11!

according to~4.3! with Rep1'1.34 we can rewrite the lateral
velocity that is effective for the concentration distribution
profile ~4.10! of theD wave as

ueff
D ~z!'vc

~0!1sRe@1.3426 z~12z!#. ~4.12!

Thus, in the bulkueff
D (z51/2)'vc

(0)20.16sRe decreases
with increasing through-flow whileueff

D increases near the
plates withRe, e.g.,ueff

D (z51/4)'vc
(0)10.21sRe. This ex-

plains the flow-induced changes in the profileĉ ~4.10! to be
seen in Fig. 10 forc520.25 withvc

(0)53.6.

3. ‘‘Upstream’’ patterns

In the absence of through-flow the field structure of TWs
propagating to the left, i.e., in the upstream direction is the
mirror image of theRe50 downstream patterns shown in
the top part of Fig. 9. Therefore we have not included the
Re50 reference upstream pattern in Fig. 11 where we show
upstream patterns forRe50.3, 0.45, and 0.6.

Switching on the through-flow decreases and eventually
reverts the originalRe50 phase bending of thew and u
waves~cf. right column in Fig. 12! while the moduliuŵu and
uûu remain practically unaffected by the through-flow of
Figs. 11 and 12. On the other hand, the upstream concentra-
tion wave is significantly changed with increasingRe:
uĉ(z)u develops two side maxima in the upper and lower half
of the fluid layer while flattening in the center part~cf. left
column of Fig. 12 or also Fig. 11!. These structural changes
of thec wave always occur in theRe range beyond the zero
crossing ofvc

U where alsor c
U and kc

U show a significant
variation. Thus, we infer that these phenomena are related to
each other.

The flow-induced structural change ofĉ(z) can be under-
stood within theL50 approximation

ĉ~z!' ic
Rac

U

kc
U

ŵ~z!

ueff
U ~z!

~4.13!

to the concentration balance~3.1c! in an upstream TW with
effective lateral velocity

ueff
U ~z!5vc

U2sP~z!Re. ~4.14!

Again vc
D5vc

D/kc
D can well be approximated by

vc
U'2uvc

~0!u1sRep1Re ~4.15!

so that

ueff
U ~z!'2uvc

~0!u1sRe@1.3426 z~12z!#. ~4.16!

Note, however, that ignoring the dissipative contribution
2L¹2c on the left-hand side of the concentration balance
~3.1c! causes in theL50 concentration profile@~4.13!–
~4.16!# a divergence at

z65
1

2
6
1

2
A12

2

3 S 1.342 uvc
~0!u

sReD ~4.17a!

via the zeros ofueff
U (z) whenever

FIG. 10. Vertical profiles ofD patterns. Shown are moduli~left
column! and phases~right column! of the critical complex ampli-
tudes that are symmetric around the mid positionz51/2. Their
normalization is explained in Sec. IV F. Parameters are
L50.01, s510, c520.25.
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Re.
uvc

~0!u
1.34s

. ~4.17b!

The diffusive contribution in~3.1c! prevents the divergence
atz6 leading to side maxima inuĉ(z)u instead~cf. Fig. 12 for
Re50.45 and 0.6). Their location is shifted slightly towards
the bulk in comparison with, e.g.,z2(Re50.45)50.1 and
z2(Re50.6)50.144.

It should be noted that for the large Soret coupling
c520.25 the upstream fields displayed in Figs. 11 and 12
for Re50.6 have not yet reached their asymptotic large-Re
form — cf. also the bifurcation thresholdsr c

U in Fig. 3. For
largeRe the modulusuĉ(z)u decreases substantially and be-
comes more flat, as was observed@43# explicitly for smaller
Soret couplingc520.001,20.01.

4. ‘‘Stationary’’ patterns

Here we discuss the effect of through-flow on stationary
patterns at a moderately positive Soret coupling,c50.01, as
a representative example. In the absence of through-flow,
Re50, the perturbation fields~top part of Fig. 13 and full
lines of Fig. 14! are real, in phase, and laterally mirror sym-
metric around the vertical lines of maximal upflow (x50)
and downflow (x561). Thus, forRe50 the lateral loca-
tions of largest alcohol surplus~deficiency! coincide with the
largest vertical upflow~downflow! velocity that feeds the
bulk with warm, alcohol rich~cold, alcohol poor! fluid from
the bottom~top! plate. Note that forc.0 the Soret effect
causes concentration surplus~deficiency! at the warm~cold!
plate. The critical convective concentration amplitude
uĉ(z)u is for Re50 so large that the full line representing it
in Fig. 14 lies outside the chosen plot range. The critical
wavelengthlc

(0)(c50.01)52.9833 of theRe50 pattern
~top part in Fig. 13! is substantially larger than 2.

Already a small through-flow changes the above de-
scribed field structure of stationary convective perturbations
dramatically. The wavelength decreases toward 2. The flow
amplitudesuŵ(z)u and even more conspicuously the concen-
tration amplitudeuĉ(z)u decrease. The phasewc(z) of the
concentration field exhibits a strong vertical variation reflect-
ing the almost passive advection by the flow that is roughly
characterized by the parabolic lateral through-flow profile su-

FIG. 11. Spatial structure ofU patterns. They propagate for
Re→0 upstream, i.e., to the left. Contours of the fieldsw, u, c in
vertical cross sections of the fluid layer are shown for different
Re as indicated. White~black! implies large~small! field values.
The largest vertical up~down! flow is at x50(61). Contour lines
mark fractions6(0,1,2,3,4)/5 of the field maxima. Parameters are
L50.01, s510, c520.25. The critical frequencies are about
vc
U'211.21141.9Re.

FIG. 12. Vertical profiles ofU patterns. Shown are moduli~left
column! and phases~right column! of the critical complex ampli-
tudes that are symmetric around the mid positionz51/2. Their
normalization is explained in Sec. IV F. Parameters are
L50.01, s510, c520.25.
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perimposed upon a roll-like closed-flow pattern.
For c,0, however, amplitudes and phases ofS patterns

become more and more similar to those ofD patterns when
the two bifurcation branchesr c

S and r c
D approach each other

with increasingRe in Fig. 8. However, thecritical wave
numbers of these two structures differ: Forc520.001
we find k̂c

D51.001 and k̂c
S50.998 and for c520.01

the difference of the critical wave numbers

( k̂c
D51.089, k̂c

S50.9678) increases. Thus,k̂c
D2 k̂c

S increases
with ucu when the bifurcation branches collide as described
in Secs. IV C 4 and IV C 5.

V. ABSOLUTE AND CONVECTIVE INSTABILITY

Whenever at a stability threshold the frequency is nonzero
with a finite group velocity

vg5
]v~k!

]k U
kc

~5.1!

one has to distinguish between spatiotemporal growth behav-
ior of spatially extended and of spatially localized perturba-
tions. The former having a form;eikx have a positive
growth rate above the bifurcation thresholdsr c determined in
the previous section.

A. Wave packets, front propagation, and saddle point analysis

A spatially localized perturbation, i.e., a wave packet su-
perposition of plane-wave extended perturbations of a par-
ticular kind moves in the so called convectively unstable
parameter regime@44–47# with the velocityvg faster away
than it grows — while growing in the frame comoving with
vg the packet moves out of the system so that the basic
conductive state is restored. In other words, the two fronts
that join the wave packet’s intensity envelope to the struc-
tureless state both propagate in the direction in which the
packet center moves. On the other hand, in the so called
absolutely unstable parameter regime the growth rate of the
packet is so large that one front propagates opposite to the
center motion. Thus the packet expands in the laboratory
frame into the direction of packet motion as well as opposite
to it @44,45#.

FIG. 13. Spatial structure ofS patterns. They are stationary for
Re→0. Contours of the fieldsw, u, c in the vertical cross sec-
tions of the fluid layer are shown for differentRe as indicated.
White ~black! implies large~small! field values. The largest vertical
up ~down! flow is at x50(61). Contour lines mark fractions
6(0,1,2,3,4)/5 of the field maxima. Parameters are
L50.01, s510, c50.01. The critical frequencies are about
vc
S'41.9Re.

FIG. 14. Vertical profiles ofS patterns. Shown are moduli~left
column! and phases~right column! of the critical complex ampli-
tudes that are symmetric around the mid positionz51/2. Their
normalization is explained in Sec. IV F. Parameters are
L50.01, s510, c50.01.
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We would like to emphasize that we are dealing here only
with a linear analysis of the convective fields. Thus we do
not address the question whether, e.g., at a subcritical bifur-
cation the above decribed wave packet grows to a stable
nonlinear state that then expands back into the system with a
larger nonlinear front velocity so that the nonlinear struc-
tured state ultimately invades the region occupied by the
homogeneous state.

The boundary in parameter space between convective and
absolute instability is marked by parameter combinations for
which one of the fronts of the linear wave packet reverts its
propagation direction in the laboratory frame: In the convec-
tively unstable regime this front propagates in the same di-
rection as the center of the packet, in the absolutely unstable
regime it moves opposite to it, and right on the boundary
between the two regimes the front is stationary in the labo-
ratory frame. This parameter combination can be determined
by a saddle point analysis of the linear complex dispersion
relations(k) over the complexk plane@46#. Here we do not
display the dependence ofs on the control parameters
r , Re, andc.

The condition of vanishing front propagation velocity is
equivalent to finding the parameters for which

Res~k!50 ~5.2!

with k denoting the appropriate saddle position ofs(k) de-
termined by solving

]s~k!

]k
50 ~5.3!

in the complexk plane@46#. In Appendix A 2 we describe
our numerical method of finding the solution of~5.2! and
~5.3!. It yields the sought after surface inr -Re-c parameter
space, e.g., in the form of a functionr c-a(Re,c) depending
on Re and c. This borderr c-a lies above the bifurcation
thresholdr c for growth of extended states. Thus forr,r c the
basic conductive state is stable, forr c,r,r c-a it is convec-
tively unstable, and forr c-a,r it is absolutely unstable.

B. Ginzburg Landau amplitude equation approximation

To solve~5.2! and~5.3! for r c-a one has to determine the
dispersion relations(k;r ,Re,c) for complexk; i.e., one has
to solve the eigenvalue problem~3.9! for complexk. This is
in general a quite involved numerical task. A somewhat sim-
pler, yet approximate method, is to use an expansion of
s(k;r ,Re,c) that corresponds to approximate the full field
equations by the Ginzburg Landau amplitude equation
~GLE!. We recapitulate the derivation of the relevant equa-
tions here for completeness. The comparison with results
from the full field equation~Sec. V C! shows that the GLE
yields quite useful approximations to the borderlines be-
tween absolute and convective instability.

1. Expansion of s„k; r …

ConsiderReandc to be fixed for the moment so that we
do not have to display them explicitly in the argument list of
s. Under the assumptions~i! that the sought after saddlek in

the complexk plane lies close to the critical wave number
kc and ~ii ! that the relative distance

mc-a5
r c-a
r c

21 ~5.4!

between the convective-absolute borderr c-a and the critical
Rayleigh numberr c is small we expand

s~k;r !5sc1~k2kc!S ]s

]kD
c

1
1

2
~k2kc!

2S ]2s

]k2D
c

1mS r ]s

]r D
c

1 ~higher-order terms! . ~5.5!

Here we have introduced for convenience the relative dis-
tance

m5
r

r c
21 ~5.6!

of the Rayleigh numberr from its critical valuer c for onset
of convection. The higher-order terms in~5.5! should be of
orderm3/2 since for small 0,m!1 only extended perturba-
tions with ~real! wave numbers out of a band of width
k2kc;Am can grow.

2. Relation to linear amplitude equation

The expansion coefficients of~5.5! appear also in the lin-
ear parts of the complex GLE

t0~] t1vg]x!A5@m~11 ic0!1j0
2~11 ic1!]x

2#A

1 ~nonlinear terms! . ~5.7!

HereA(x,t) is the common complex amplitude of convec-
tion fieldsF5(w,u,c),

F~x,z,t !5A~x,t !F̂~z!ei ~kcx2vt !1c.c., ~5.8!

that bifurcate out of the conductive state atm50. The ap-
proximation~5.8! can be expected to be a good one as long
asA is small and, more importantly, as long as the spatial
field structure is well represented by that of the critical eigen-
functionsF̂(z)eikcx.

The relations between the expansion coefficients ofs and
the coefficients in the amplitude equation are

S ]s

]kD
c

52 i S ]v

]k D
c

52 ivg , ~5.9a!

S r ]s

]r D
c

5r cS ]g

]r
2 i

]v

]r D
c

5
11 ic0

t0
, ~5.9b!

S ]2s

]k2D
c

52
2 j0

2

t0
~11 ic1!. ~5.9c!

In ~5.9c! we have used the relation@40#

S ]2g

]k2 D
c

52S ]g

]r

]2r stab
]k2 D

c

~5.10!
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to relate the secondk derivative of the growth rate to the
critical curvaturej0

25(]2r stab/]k
2)c/(2r c) of the marginal

stability curver stab(k). Note that the approximated disper-
sion relation~5.5! is precisely that of the GLE approxima-
tion.

3. Saddle and convective-absolute instability border

With the notation~5.9! the saddlek ~5.3! of the approxi-
mated dispersion~5.5! lies at

k5kc2
~]s/]k!c

~]2s/]k2!c
5kc2

i

11 ic1

vgt0
2 j0

2 . ~5.11!

Then the condition~5.2!

05ReFmS r ]s

]r D
c

2
1

2

~]s/]k!c
2

~]2s/]k2!c
G ~5.12!

yields the GLE approximation

mc-a5
vg
2t0

2

4 j0
2~11c1

2!
~5.13a!

or

r c-a5~11mc-a!r c ~5.13b!

for the boundary between the convectively and absolutely
unstable parameter regime@46–48#.

C. Convective and absolute instability against
S, U, and D perturbations

Here we present in Fig. 15 our numerical results for the
borderlines between absolute and convective instability ob-
tained from the full field equations~cf. Appendix A 2! in
comparison with the GLE results.

There are three different types of extended perturbations
in our system, namelyS, U, andD, against which the basic
conductive state becomes unstable at the bifurcation thresh-
old r c

S ,r c
U and r c

D that have been determined in Sec. IV.
Consequently one has to investigate the spatiotemporal
growth behavior of three different packets consisting of su-
perpositions ofS, U, or D plane-wave perturbations. Their
analysis along the lines of Sec. V A and Appendix A 2 yields
three functionsr c-a

S ~circles!, r c-a
U ~upwards pointing tri-

angles!, and r c-a
D ~downwards pointing triangles! each de-

pending onRe and c that mark the boundary surfaces in
r -Re-c parameter space between the convectively and abso-
lutely unstable regimes of the basic state against typeS,
U, or D perturbations.

In order to determine the three boundaries within the GLE
approximation we have determined the derivatives~5.9! of
the respective eigenvaluessS, sU, andsD at their respective
critical pointsr c(Re,c), kc(Re,c) @43#. Then~5.13! yields
the functionsr c-a(Re,c) for the three patterns. They are
shown in Fig. 15 for a fewc as functions ofRe by thick
lines (S: dotted,U: full, D: dashed! together with the corre-
sponding bifurcation thresholdsr c ~thin lines!. For positive
Soret couplingc50.01, 0.001 one obtains within the GLE
approximation a local maximum ofr c-a

S (c50.01 at
Re'0.25, c50.001 atRe'0.1), when the product oft0

decreasing withRe and vg increasing withRe reaches a
maximum. In thec50.01 case a second maximum is visible
at smallRe that is possibly associated with a root ofc1. In
contrastr c-a

S of the full field equations~circles! is monoto-
nously increasing withRe. For negative Soret coupling
c520.001,20.01, 20.1, and20.25 r c-a

U first decreases
with increasingRe, coincides at its local minimum withr c

U

when vg50, and afterwards increases withRe. The GLE
approximation yields good quantitative agreement with the
results of the full field equations forr c-a

U ~upwards pointing
triangles! in the vicinity of the local minimum, while for
higher Re the GLE results increase more strongly. For
smaller Reynolds numbers this validity range is typically en-
larged down toRe50 for thec values presented here.

As discussed in Sec. IV C 5 we have limited our investi-
gation of r c

D and r c
S as functions ofRe to cases where the

wave number gap in theD-S marginal stability curves has
not yet appeared. Therefore, within the GLE approximation
r c-a
D andr c-a

S are determined by the expansion coefficients of
s ~5.9! at the critical Rayleigh numberr c only as long as the

FIG. 15. Borderlinesr c-a between absolute and convective in-
stability versus through-flow rate. Symbols andthick curves repre-
sentr c-a obtained from the full field equations and from the GLE,
respectively.Thin curves show stability curvesr c discussed in Sec.
IV. The different types of perturbations are identified by circles and
dotted lines (S), upwards pointing triangles and full lines (U), and
downwards pointing triangles and dashed lines (D). The case of a
pure fluid,c50, is shown by dash-dotted lines: thick one forr c-a

S

and thin one forr c
S Parameters areL50.01,s510, and c as

shown.
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calculation ofr c
D andr c

Swas numerically possible. Neverthe-
less, for higherRecritical Rayleigh numbers still exist to the
left and right hand side of the wave number gap~cf. Fig. 6!.
We also found that theS saddle point of the full field equa-
tions ~evaluated by successively increasingRe) evolves mo-
notonously whenRe increases beyond the threshold where
the wave number gap occurs. The wave number of this
saddle point is always abovek̂51 and increases withRe.

The GLE results forr c-a
D are increasing stronger than

those of the full field equations~downwards pointing tri-
angles!. Forc520.001 ther c-a

D stability limit seems to ter-
minate close to the Reynolds number where the wave num-
ber gap ~cf. Sec. IV C 5! opens up in theD-S marginal
stability curves. There Imk seems to change sign when in-
creasingRe further. A graphical analysis of this saddle that
has moved into the lower complexk plane suggests that
there Res,0 above a certainRe limit for all r so that this
saddle can be ignored.

VI. CONCLUSION

We have investigated the influence of an externally im-
posed horizontal shear flow on linear convective structure
formation in binary fluid layers heated from below. To that
end we have solved the linearized field equations for convec-
tive perturbations of the basic conductive state numerically
with a shooting method. In addition we have checked our
results — in particular some of the peculiar changes wih
Re— by a variational calculation that gave good agreement.
We have determined for positive and negative Soret coupling
c the Re dependence of the critical bifurcation properties:
stability thresholds, wave numbers, frequencies, and eigen-
functions for three different types of perturbations. The latter
are identified by different characteristic exponents that cause
perturbations to be stationary (S), downstream traveling
(D), or upstream traveling (U) at Re50.

The Hopf symmetry degeneracy ofU andD perturbations
at Re50 andc,0 is broken by a finite through-flow —
wave numberskc

U andkc
D , frequenciesvc

U andvc
D and bi-

furcation thresholdsr c
U andr c

D develop differences. At small
Re upstream traveling wave convection grows first upon in-
creasing the heating sincer c

U is depressed andr c
D is shifted

upwards. But then, with increasing through-flow the bifurca-
tion linesr c

U andr c
D intersect, giving rise to bistable bifurca-

tion behavior. Eventuallyr c
U flattens out and approaches for

largeRe the pure fluid’s stability boundaryr c
S(Re,c50) —

a sufficiently strong shear flow eliminates the Soret induced
coupling effects between the convective concentration field
and temperature and velocity fields. This also holds for mix-
tures with positivec. The bifurcation thresholdsr c

D monoto-
nously curve upwards when increasingRe and collide with
the r c

S threshold lines that forc,0 sharply drop downwards
with growingRe. This behavior is easily understood by ana-
lyzing the Re variation of the paths of the relevant three
eigenvalues in the complexg-v plane and of the variation of
g(k,r ).

At c.0 the stationary thresholdr c
S rapidly approaches

thec50 asymptote of a pure fluid from below — again the
shear flow suppresses the vertical convective transport of
Soret induced concentration gradients. Thus, any Soret ef-

fect’s influence on the bifurcation thresholds is eliminated by
sufficiently large through-flow.

Finally we have evaluated the bordersr c-a
U , r c-a

D , and
r c-a
S between convective and absolute instability forU, D,
andS perturbations, respectively. To that end we have deter-
mined the relevant saddles of the dispersion relations
sU(k), sD(k), andsS(k) in the complex wave number plane.
These numerically exact results were compared with GLE
approximations, which agree reasonably well with the
former. The latter were obtained by an expansion around the
respective critical values and by evaluating all the coeffi-
cients that enter into the linear GLE forU, D, andS pat-
terns.
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APPENDIX A: NUMERICAL ANALYSIS

1. Shooting algorithm

Here we describe our version of the shooting algorithm
modified so as to better cope with the numerical problems
caused by the concentration boundary layers near the hori-
zontal plates.

The equations~3.1! are written as an eight-dimensional
system of first-order differential equations

]zy2A~z, l!y50 at 0<z<1, ~A1!

where the coefficient matrix follows directly from~3.9!. The
eigenvalues

l5@r stab~k!,v~k!#g50 or l5@g~k!,v~k!# rfixed
~A2!

are determined as a function ofk either for g50 on the
marginal stability boundaryr stab(k) or for fixedr . The eigen-
functions

y5~w,]zw,]z
2w,]z

3w,u,]zu,z,]zz! ~A3!

fulfill the boundary conditions

y15y25y55y850 at z50, 1, ~A4!

following from ~3.3!.
First ~A1! is integrated with a fourth-order Runge-Kutta

method with the initial vectors~z50!

y15ê3 , y25ê4 , y35ê6 , y45ê7 , ~A5!

whereêj is the unit vector in thej direction. Then an arbi-
trary linear combination

y~z!5(
j51

4

ajy
j~z! ~A6!

fulfills the boundary conditions atz50, but not atz51. The
latter is guaranteed by choosing the correct coefficientsaj .
This leads to a set of homogeneous equations
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S y11 y1
2 y1

3 y1
4

y2
1 y2

2 y2
3 y2

4

y5
1 y5

2 y5
3 y5

4

y8
1 y8

2 y8
3 y8

4

DU
z51

S a1a2a3
a4

D 50. ~A7!

The nontrivial solution of~A7! requires the determinant of
the coefficients to vanish. Thus, this solvability condition but
also the explicit evaluation of the eigenvalues requires the
knowledge of the eigenfunctions atz51. This is a problem
because of the strong variations in the boundary layers —
see, e.g., Fig. 9. Our integrator is not able to shoot exactly
from z50 to z51 so that we cannot evaluate the eigenval-
uesl with a fixed accuracy. Especially, this fact makes it
difficult to find a good critical wave number. To understand
this, we can expand the stability curver stab aroundkc

exact,

Dr5r stab~kc
exact1q!2r stab~kc

exact!

5
1

2
q2

]2r stab
]k2 U

k
c
exact

1O~q3! ~A8!

and we find the defect

q'ADr /r c
j0
2 . ~A9!

With j0
2;O(1) the accuracyDr strongly affects the accu-

racy of the critical wave number and of the coefficients en-
tering the GLE.

One could change the integrator. But the problem can be
solved more easily. Using the mirror symmetry of the eigen-
functions (w,u,z) one only needs to shoot fromz50 to mid
heightz51/2. There the new boundary conditions are

y25y45y65y850 at z5 1
2 . ~A10!

The new homogeneous equations replacing~A7! are then

S y21 y2
2 y2

3 y2
4

y4
1 y4

2 y4
3 y4

4

y6
1 y6

2 y6
3 y6

4

y8
1 y8

2 y8
3 y8

4

DU
z51/2

S a1a2a3
a4

D 50. ~A11!

Now, shooting only fromz50 toz51/2 we can compute the
eigenvalues with a fixed accuracy in our parameter range. A
welcome secondary effect is that one saves CPU time. How-
ever, it must be said that this trick only delays the boundary
layer problem without eliminating it completely: If the pa-
rameters are such that the phase velocityuvc /kcu reaches
about 20 the boundary layer atz50 has become so thin that
it is no longer possible to use our integrator.

2. Saddle point analysis

The borderliner c-a between convective and absolute in-
stability is defined by the conditions~5.2! and ~5.3! on the
dispersion relation after a continuation into the complex
wave number plane, which also gives the saddle point posi-
tion k and the frequencyv(k). We have determined

Res(k) and Ims(k) with a shooting method fromz50 to
mid heightz51/2 ~see Appendix A 1! for given r , Re, and
c and complexwave numberk. Then we solved for fixed
Re andc the nonlinear system of the three equations

Res~k,r !50, ~A12!

] Res~k,r !

]~Rek!
50, ~A13!

] Res~k,r !

]~ Imk!
50, ~A14!

which correspond to~5.2! and~5.3! with a Newton-Raphson
method with backtracking. The solution yields the borderline
value r c-a and the saddle positionk of s in the complexk
plane.

The Jacobian matrix as well as the partial derivatives
were obtained in discretized form by using central differ-
ences in the variables Rek, Imk, andr . Mainly two problems
occur: one needs a good initial guess to ensure convergence
of the Newton-Raphson method, and for higher Reynolds
numbers, which are not discussed here, the shooting method
starts to fail for the given accuracy limit~see Appendix A 1!.

We also used an alternative iterative method to evaluate
the saddle points. It yields the same results as our first
method, but it does not require partial derivatives. First we
calculate the eigenvalue

@v~k̃ !,r ~ k̃ !#g50 ~A15!

at a suitably chosen initial valuek̃ for the saddle position.
Then, along a circle in the complexk plane of radiusr
aroundk̃ we determine, say,n.10 values

@v~kj !,g~kj !# r5r ~ k̃ ! , j50, . . . ,n21 ~A16!

with

kj5k̃1rFcosS 2 jpn D1 isinS 2 jpn D G . ~A17!

The function values$v(k̃),v(k0), . . . ,v(kn21)% are then
used for a biquadratical fit

v~k!5a01a1Imk1a2Rek1a3~ Imk!21a4~Rek!2

1a5Imk Rek ~A18!

and the analytically determined saddle of~A18! is used as a
new initial valuek̃. Now, we reduce the circle radiusr by a
factor a and continue as above. We repeat this procedure
until the changes ofk̃ have fallen below a suitable limit. This
method is fast, robust, and easily programmable. However,
the firstr and the reducing factora have to be chosen care-
fully. Typically we putr;O(1022) anda5A2.

APPENDIX B: COMPARISON WITH A
VARIATIONAL METHOD

In view of the unexpectedRe dependence, say, of Fig. 2
we wanted to compare our results obtained with a shooting
method with a completely different and independent method.
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To that end we used the variational method of Prigogine and
Glandsdorff@49,50#. While this method does not yield exact
results it still is very valuable in providing an independent
check for our numerical analysis.

The aim of this variational method is to find a functional,
called the local potential, and to minimize it. We start with
the linearized field equations

] tu52s Re P]xu2]xp1s¹2u2s Re w]zP,
~B1a!

] tw52s Re P]xw2]zp1s¹2w1s@~11c!u1z#,
~B1b!

] tu52s Re P]xu1¹2u1Ra w, ~B1c!

] tz52s Re P]xz1L¹2z2c¹2u, ~B1d!

05]xu1]zw. ~B1e!

Hereu, w, u, z, andp are convective disturbances from
the conductive profiles andP(z) the Poiseuille shear flow
~2.8b!. Following the procedure explained in Ref.@49# we
multiply the above equations by increments of the respective
fields: ~B1a! by 2du, ~B1b! by 2dw, ~B1c! by 2du, and
~B1d! by 2dz. Here, e.g.,

w5w01dw ~B2!

with w0 being a solution of~B1! that is not varied in the
following. Then we add and obtain

2 1
2 ] t@~du!21~dw!21~du!21~dz!2#

5] tu
0du1] tw

0dw1] tu
0du1] tz

0dz

1s Re P]xudu1s Re w]zPdu

1]xpdu2sdu¹2u1s Re P]xwdw

2sdw@~11c!u1z#2sdw¹2w2Ra wdu

2du¹2u1s Re P]xudu1]zpdw

2Ldz¹2z1cdz¹2u1s Re P]xzdz ~B3!

when making use of relations such as

2] twdw52] t~w
01dw!dw52 1

2 ] t~dw!22] tw
0dw.

~B4!

We expand the fields in plane waves,F5F̂(z)eikxest, and
we integrate over the entirex-z cross section of the fluid
layer. Following closely the prescriptions of Ref.@50# we
then obtain the local potential

C5E
0

1

dzF sk2 ]zŵ
0]zŵ1s~ŵ0ŵ1 û0û1 ẑ0ẑ !

1s]zŵ
0]zŵ2

s

2 k2
~]z

2ŵ!21
2 s

k2
]z
2ŵ0]z

2ŵ

1 iks Re P~ŵ0ŵ1 û0û1 ẑ0ẑ !1
s

2
~]zŵ!2

1sk2S ŵ0ŵ1
1

s
û0û1

L

s
ẑ0ẑ D2s~11c!û0ŵ

2Ra ŵ0û1
1

2
~]zû !21

L

2
~]zẑ !22sẑ0ŵ2ck2û0ẑ

1c]z
2û0ẑ2

i

k
s Re ŵ0]zŵ]zP1

i

k
s Re P]zŵ

0]zŵG .
~B5!

Here we have elimitated the pressure by using~B1a!:

2 p̂05
s

k2
]zŵ

01
i

k
s Re P]zŵ

02
i

k
s Re ŵ0]zP2

s

k2
]z
3ŵ0

1s]zŵ
0. ~B6!

Furthermore, partial integrations inz have been applied. One
can check directly that the Euler-Langrange equation for,
say, ẑ,

]C

]ẑ
2

]

]z

]C

]~]ẑ/]z!
50, ~B7!

leads to

@s1 iks Re P#ẑ05L~]z
2ẑ2k2ẑ0!2c~]z

22k2!û0.
~B8!

This is together with thea posteriori subsidiary condition
ẑ5 ẑ0 the Eq. ~B1d!. An analogous calculation leads with
respective subsidiary conditionsû5 û0, ŵ5ŵ0 to the other
differential equations.

To get the critical values we expand the unknowsŵ,û,
and ẑ,

ŵ~z!5(
j51

N1

w̃j f j~z!, ŵ0~z!5(
j51

N1

w̃j
0f j~z!, ~B9a!

û~z!5(
j51

N2

ũ jgj~z!, û0~z!5(
j51

N2

ũ j
0gj~z!, ~B9b!

ẑ~z!5(
j51

N3

z̃ jhj~z!, ẑ0~z!5(
j51

N3

z̃ j
0hj~z! ~B9c!

in functions f j , gj , and hj that satisfy the NSI boundary
conditions. As trial functions we use

f j~z!5@z~12z!#2 j , ~B10a!

gj~z!5z~12z!~2 z21!2~ j21!, ~B10b!
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hj~z!5@z~12z!#2~ j21!. ~B10c!

We insert ~B9! and ~B10! into the expression forC, we
minimize with respect to the variational parameters
w̃j , ũ j , and z̃ j , and we use the subsidiary conditions

w̃j5w̃ j
0 , ũ j5 ũ j

0 , z̃ j5 z̃ j
0 . ~B11!

Then we obtain a system ofN5N11N21N3 linear homo-
geneous equationsAx50 where the vectorx hasN compo-
nents containingw̃ j

0 , ũ j
0 , and z̃ j

0 . For nontrivial solutions
to exist the determinant ofA must be zero, so that we have
to solve the equation

detA@r stab~k!,v~k!#g5050. ~B12!

With N151, N253, N354 the software packageMATH-
EMATICA is able to solve~B12! exactly.

The variational results display the same structural proper-
ties as the shooting results and they agree within less than
1%22% forReÞ0. ForRe50 the agreement is better. We
found, e.g., for c520.25 the critical values
r c51.33497, k̂c51.00451, andvc5611.20027 differing
by less than 0.2% from the shooting results. As an interest-
ing aside we mention that the variational calculus yields
in the absence of through-flowc`

052L/(11L) exactly.
Furthermore, the separation ratioc0 for which kc50 is
obtained as c05L/( f2L) with f56695603/25739142
50.2601..., which has to be compared with the analytically
exact resultf534/13150.2595...@41,37#.
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ited by E. Tirapegui and D. Villaroel~Reidel, Dordrecht, Hol-
land, 1987!, p. 141.

@47# P. Huerre, inPropagation in Systems far from Equilibrium,
edited by J. E. Wesfreid, H. R. Brand, P. Manneville, G. Al-
binet, and N. Boccara~Springer-Verlag, Berlin, 1988!, p. 340.

@48# R. J. Deissler, J. Stat. Phys.40, 371 ~1985!.

@49# P. Glandsdorff and I. Progogine, Physica30, 351 ~1964!; I.
Progogine and P. Glandsdorff,ibid. 31, 1242~1965!; Thermo-
dynamic and Theory of Structure, Stability and Fluctuations
~Wiley-Interscience, London, 1971!.

@50# J. K. Platten, Int. J. Eng. Sci.9, 37 ~1971!; 9, 855 ~1971!.

54 1529INFLUENCE OF THROUGH-FLOW ON LINEAR PATTERN . . .


